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Phase transitions of hard disks in external periodic potentials: A Monte Carlo study
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The nature of freezing and melting transitions for a system of hard disks in a spatially periodic external
potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analysis of various
thermodynamic quantities like the order parameter, its cumulants, etc., are used to map the phase diagram of
the system for various values of the density and the amplitude of the external potential. We find clear indication
of a reentrant liquid phase over a significant region of the parameter space. Our simulations therefore show that
the system of hard disks behaves in a fashion similar to charge-stabilized colloids that are known to undergo
an initial freezing, followed by a remelting transition as the amplitude of the imposed, modulating field
produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features
consistent with a recent dislocation unbinding theory of laser induced melting.
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I. INTRODUCTION

The liquid-solid transition in systems of particles und
the influence of external modulating potentials has rece
attracted a fair amount of attention from experiments@1–7#,
theory @8,9#, and computer simulations@10–13#. This is
partly due to the fact that well-controlled, clean experime
can be performed using colloidal particles@14# confined be-
tween glass plates~producing essentially a two-dimension
system! and subjected to a spatially periodic electromagne
field generated by interfering two, or more, crossed la
beams. One of the more surprising results of these stud
where a commensurate, one-dimensional, modulating po
tial is imposed, is the fact that there exist regions in the ph
diagram over which one observes reentrant@4–6# freezing/
melting behavior. As a function of the laser field intensity t
system first freezes from a modulated liquid to a tw
dimensional triangular solid—a further increase of the int
sity confines the particles strongly within the troughs of t
external potential, making the system quasi-one-dimensio
which increases fluctuations and leads to remelting.

Our present understanding of this curious phenome
has come from early mean-field density functional@8# and
more recent dislocation unbinding@9# calculations. The
mean-field theories neglect fluctuations and therefore ca
explain reentrant behavior. The order of the transition is p
dicted to be first order for small laser field intensities, thou
for certain combinations of external potentials~which in-
cludes the specific geometry studied in the experiments
in this paper! the transition may become second order af
going through a tricritical point. In general, though me
field theories are applicable in any dimension, the results
expected to be accurate only for higher dimensions and l
ranged potentials. The validity of the predictions of su
theories for the system under consideration is, therefore
doubt.

A more recent theory@9# extends the dislocation unbind
ing mechanism for two-dimensional melting@22# for systems
under external potentials. For a two-dimensional triangu
solid subjected to an external one-dimensional modula
1063-651X/2001/63~4!/046106~10!/$20.00 63 0461
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potential, the only dislocations involved are those that ha
their Burgers vectors parallel to the troughs of the potent
The system, therefore, maps onto an anisotropic, scalar C
lomb gas~or XY model! @9# in contrast to avectorCoulomb
gas @22# for the pure two-dimensional melting problem
Once bound dislocation pairs are integrated out, the mel
temperature is obtained as a function of the renormalized
‘‘effective’’ elastic constants that depend on external para
eters like the strength of the potential, temperature, an
density. Though explicit calculations are possible only n
the two extreme limits of zero and infinite field intensitie
one can argue effectively that a reentrant melting transitio
expected on general grounds quite independent of the
tailed nature of the interaction potential for any tw
dimensional system subject to such external potentials.
actual extent of this region could, of course, vary from s
tem to system. In addition, these authors predict that
auto-correlation function of the Fourier components of t
density~the Debye-Waller correlation function! decays alge-
braically in the solid phase at the transition with a univer
exponent that depends only on the geometry and the ma
tude of the reciprocal lattice vector.

Computer simulation results in this field have so far be
inconclusive. Early simulations@10# involving colloidal par-
ticles interacting via the Derjaguin-Landau-Verwe
Overbeek potential@14# found a large reentrant region i
apparent agreement with later experiments. On closer s
tiny, though, quantitative agreement between simulation
experiments on the same system~but with slightly different
parameters! appears to be poor@6#. Subsequent simulation
@11–13# have questioned the findings of the earlier comp
tation and the calculated phase diagram does not sho
significant reentrant liquid phase.

Motivated, in part, by this controversy, we have inves
gated the freezing/melting behavior of an unrelated sys
subjected to similar modulating external potentials. In t
paper we have computed the phase behavior of a t
dimensional hard disk system in an external potential. T
pure hard disk system is rather well studied@15–18# by now
and the nature of the melting transition in the absence
©2001 The American Physical Society06-1
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external potentials reasonably well explored. Also, there
ist colloidal systems with hard interactions@14# so that, at
least in principle, actual experiments using this system
possible. Finally, a hard disk simulation is relatively cheap
implement and one can make detailed studies of large
tems without straining computational resources. The m
outcome of our calculations, the phase diagram, is show
Fig. 1. We have shown results from our simulation of
system ofN51024 hard disks~diameters) of density 0.86
,r* (5rs2),0.91 and the amplitude of the external pote
tial 0,V0* (5bV0),1000. Within our range of densities
one has a clear signature of a reentrant liquid phase sho
that this phenomenon is indeed a general one as indicate
Ref. @9#.

The rest of our paper is organized as follows. In Sec
we specify the model and the simulation method includ
details of the finite size analysis used. In Sec. III we pres
our results for the order parameter and its cumulants wi
discussion on finite size and hysteresis effects. We a
present results for the specific heat, order parameter sus
tiblity and correlation functions, which further illustrates th
nature of the phase transitions in this system. In Sec. IV
discuss our work in relation to the existing literature on t
subject, summarize and conclude.

II. MODEL AND METHOD

A. The model

We study a system ofN hard disks of diameters in a
two-dimensional box of sizeSx3Sy (Sx /Sy5A3/2) interact-
ing with the pair potentialf(r i j ) between particlesi and j
with distancer i j ,

f~r i j !5H `, r i j <s

0, r i j .s.
~1!

FIG. 1. Phase diagram in ther* /V0* plane. Transition points for
transitions from the solid to the modulated liquid have been
tained by the order parameter cumulant intersection method. In
der to map the phase diagram we scanned inr* for every V0* ,
starting from the high density~solid! region. The system size i
N51024.
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In addition, a particle with coordinates (x,y) is exposed to
an external periodic potential of the form

V~x,y!5V0 sin~2px/d0!. ~2!

The constantd0 in Eq. ~2! is chosen such that for a densi
r5N/SxSy , the modulation is commensurate to a triangu
lattice of hard disks with nearest neighbor distanceas , d0

5asA3/2 ~see Fig. 2!. The only parameters that define o
system are the reduced densityrs25r* and the reduced
potential strengthV0 /kBT5V0* , wherekB is the Boltzmann
constant andT is the temperature.

B. The method

1. Numerical details

We perform Monte Carlo~MC! simulations@19,20# in the
canonical~NVT! ensemble for the system with interaction
given by Eqs.~1! and ~2! for various values ofV0* andr* .
Averages^•& of observables have been obtained with t
canonical measure. In order to obtain thermodynamic qu
tities for a range of system sizes, we have analyzed var
quantities within subsystems as shown in Fig. 3. We h
used^•&L to denote averages in subsystems. The subsyst
are of sizeLx3Ly , where Lx and Ly are chosen asLy

5Las and Lx5LyA3/2 consistent with the geometry of th
triangular lattice.

Most of the simulations described below have been d
for N51024 particles unless otherwise indicated. Phase t
sitions have been studied in most cases by starting in
ordered solid and reducingr* for fixed V0* . Runs where the
densityr* is increased were also performed in a few cas

A typical simulation run with 43107 Monte Carlo steps
~MCS! ~including 1.53107 MCS for relaxation! took about
50 CPU hours on a PII/500 MHz PC. At high values ofV0* in
addition to ordinary ~local! MC moves we also used
‘‘through-moves,’’ by which particle placements in neigh

-
r-

FIG. 2. Schematic picture of the system geometry showing

direction GW 1 along which crystalline order develops in the mod

lated liquid. The four vectors obtained by rotatingGW 1 counter-
clockwise by 60° and/or reflecting about the origin are equivale
The parametersd0 and as are also shown. The size of the box
Sx3Sy and the modulating potential isV.
6-2
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PHASE TRANSITIONS OF HARD DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 63 046106
boring troughs are tried. Besides producing faster equilib
tion, including such moves ensures that the formation of d
locations for largeV0* and r* .A3/2 (d0,s) are not
artificially hindered since particles can bypass each othe
this is impossible with purely local MC moves.

To guarantee good equilibration and averaging, we sim
lated only systems up toN51600 particles in the region o
the phase boundary. Systems withN54096 andN516 384
were used only once in Fig. 11, where the interesting reg
is clearly in the liquid phase and equilibration is much eas

2. Order parameter

The nature of the fluid-solid phase transition in two d
mensions has been a topic of controversy throughout the
40 years@21–23,16,17,24,18#. It is well known that true long
range positional order is absent in the infinitely large syst
due to low energy long wavelength excitations so that tra
lational correlations decay algebraically. According to t
dislocation unbinding mechanism@22,23#, the two-
dimensional solid~with quasi-long-ranged positional orde!
first melts into a ‘‘hexatic’’ phase with no positional orde
but with quasi long ranged orientational order signifi
by a nonzero bond orientational order parameterc6
5( exp(2i6u) whereu is the angle of a bond and the sum
over all distinct bonds. A liquid, with no bond orientation
order either (c650) is produced by a second Kosterlit
Thouless~KT! @22# transition from the hexatic.

FIG. 3. Schematic picture showing sub-boxes of sizeL ~here
L53) used in the finite size scaling analysis~see text!.
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In an external periodic field given by Eq.~2!, however,
the bond orientational order parameter is nonzero even in
fluid phase@9,12#. This is because forV0* Þ0 we have now a
‘‘modulated’’ liquid, in which local hexagons consisting o
the six nearest neighbors of a particle are automatically
ented by the external field. Thus^c6& is nonzero both in the
~modulated! liquid and the crystalline phase and it cannot
used to study phase transitions in this system. The o
parameters corresponding to a solid phase are the Fo
components of the~nonuniform! densityr(rW) calculated at
the reciprocal lattice points$GW %. This ~infinite! set of num-
bers are all zero~for GW Þ0) in a uniform liquid phase and
nonzero in a solid. We restrict ourselves to the star consis
of the six smallest reciprocal lattice vectors of the tw
dimensional triangular lattice. In the modulated liquid pha
that is relevant to our system, the Fourier components co
sponding to two out of these six vectors, viz., those in
direction perpendicular to the troughs of the external pot
tial, are nonzero@8#. The other four components of this s
consisting of those in the directionGW 1 ~as defined for the
ideal crystal in Fig. 2!, and those equivalent to it by symme
try, are zero in the~modulated! liquid and nonzero in the
solid ~if there is true long range order!. We therefore use the
following order parameter:

cG1
5U(

j 51

N

exp~2 iGW 1•rW j !U,
whererW j is the position vector of thej th particle. Note that
though the order parameter^cG1

& decays to zero with in-
creasing system size in the 2D solid—quasi-long-rang
order—this decay, being weak, does not hinder us from
tinguishing, in a finite system, a modulated liquid from t
solid phase with positional order in theGW 1 direction.

3. Cumulants

We have determined phase transition points by the or
parameter cumulant intersection method@25#. The fourth or-
der cumulantUL of the order parameter distribution is give
by

UL~V0* ,r* !512
^cG1

4 &L

3^cG1

2 &L
2

. ~3!

In the case of a continuous transition close to the transi
point, the cumulant is only a function of the ratio of th
system size'Las and the correlation lengthj: UL(Las /j).
Sincej diverges at the critical point the cumulants for d
ferent system sizes intersect in one point:UL1

(0)5UL2
(0)

5U* . Even for first order transitions these cumulants int
sect@26# though the valueU* of UL as the intersection is no
universal any more. The intersection point can, therefore
taken as the phase boundary regardless of the order o
transition. This is useful since the order of the melting tra
6-3
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FIG. 4. Order paramete
^cG1

&L @~a! and~c!# and order pa-
rameter cumulantUL @~b! and~d!#
versusr* in subsystems of sizeL
for reduced potential amplitude
V0* 50.05 @~a! and ~b!# and V0*
50.5 @~c! and ~d!#, N51024. Un-
less otherwise stated, lines con
necting data points in this and th
rest of the figures are for visua
guidance.
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sition in 2D either in the absence@21–23,16,17,24,18# or
with @8,10–13,9# external potentials is not unequivocal
settled.

In order to map the phase diagram we systematically v
the system parametersV0* andr* to detect order paramete
cumulant intersection points that are then identified with
phase boundary. It should be noted that though the o
parameter~defined for long range positional order! vanishes
@22,23# with increasing system size in the crystalline pha
its cumulants are well defined and can be used to determ
phase boundaries. For largeL the cumulants approach th
value 2/3 in the solid phase and 1/3 in the liquid@30# so that
they are guaranteed to intersect. For very largeV0* we do not
find a unique point of intersection forUL , instead the cumu-
lants for various values ofL collapse onto a single curve. I
this case the onset of the collapse is taken as the ‘‘inter
tion’’ density. It is curious to note that this behavior is,
fact, typical of the anisotropicXY model @27#. In this case
although the order parameter cumulants have an interse
point, the value of the cumulant at the intersection differs
various anisotropies and drifts towards a limiting value
zero anisotropy. The intersection ‘‘point’’ therefore chang
to a ‘‘line’’ of intersections for different system sizes and f
small anisotropies. In our system, for the largeV0* we see
similar behavior.

III. RESULTS AND DISCUSSION

A. Order parameter and cumulants

In Fig. 4 we present data for the average order param
^cG1

& and its cumulants as functions of the density forV0*
04610
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50.05 andV0* 50.5 calculated within various subsystems.
both caseŝcG1

&L andUL increase withr* with a sharpen-
ing of the structures for increasingL. As discussed above, w
observe that for any density increasing subsystem sizeL de-
presseŝ cG1

&L . The cumulantUL , on the other hand, ap
proaches limiting values~2/3 for solid and 1/3 for liquid!.
The values of the cumulants are higher for largerL in the
ordered~solid! phase and vice versa in the disordered~modu-
lated liquid! phase thus resulting in an intersection point
the transition density.

In Fig. 5 we compare the density dependence of the
erage order parameter^cG1

& ~calculated over the entire sys

FIG. 5. Average order parameter^cG1
& versus density forV0*

50.05, 2, and 40, the system size isN51024.
6-4
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PHASE TRANSITIONS OF HARD DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 63 046106
tem! for different V0* and for the same system siz
(N51024). With increasingV0* the turning point in
^cG1

&(r* ) is shifted to lower densities and then for ev

largerV0* values to higher densities. This indicates, alrea
that the system prefers having smaller transition densities
intermediate values ofV0* compared to smaller and highe
V0* values—i.e., we have a reentrant transition.

In Fig. 6 we show a systematic study of^cG1
&L andUL as

a function of V0* at the densityr* 50.89 for differentL
values. Maxima in thêcG1

&L andUL curves are found nea

FIG. 6. Order parameter^cG1
&L ~a! and order parameter cumu

lant UL ~b! versusV0* at a constant densityr* 50.89 for different
L, the system size isN51024.
04610
,
or

V0* 52. Again we note that thêcG1
&L values decrease with

increasingL @see Fig. 6~a!#. The cumulantsUL , on the other
hand, increases withL for intermediate values ofV0* ~the
ordered, solid phase! and decreases withL for either large or
small V0* ~the disordered, liquid phase! resulting in intersec-
tion points indicating two consecutive phase transitions@see
Fig. 6~b!#.

If V0* is increased to 20 the value of the cumulant
intersectionU* is shifted upwards, see Fig. 7~a!. For very
high V0* values the cumulant curves for differentL merge on
the high density side, see Fig. 7~b! ~see discussion in Sec
II B 3!. In Fig. 8 the cumulant intersection values are sho
as a function ofV0* , where for largeV0* values the value a
the onset of the merging is shown. We observe thatU* is not
an universal number but, nevertheless, goes to a limi
value for largeV0* @27#.

In Fig. 9 we shoŵ cG1
& as a function of the density with

V0* 50.5 for different N values. The general features o
^cG1

& as discussed above is retained though there is a
of the turning point to slightly higher densities with increa
ing N. The effect on the phase diagram is discussed in S
III C.

FIG. 8. ValuesU* of the order parameter cumulants at th
intersection points versusV0* . The shown data at the largest fou
values ofV0* are taken at the onset of the cumulants curves merg
~see text!. The system size isN51024.
-
FIG. 7. Order parameter cu
mulantsUL versusr* at constant
V0* 520 ~a! andV0* 51000 ~b! for
different L. The system size isN
51024.
6-5
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B. Susceptibility, specific heat, finite size effects, and hysteresis

In addition to ^cG1
&L and UL , we have computed the

order parameter susceptibilityxG1
and the specific heat fo

different system and subsystem sizes.
The order parameter susceptibilityxG1

is defined as@30#

kBTxG1
5L2@^~cG1

!2&2^cG1
&2#. ~4!

In Fig. 10~a! we show xG1
as a function ofr* at V0*

50.05 for differentL values. The increase ofxG1
with in-

creasingL, signals the presence of a phase transition in
density range where the transition has been found by cu
lant intersection techniques (r t* '0.896). In Fig. 10~b! xG1

is shown for the same system size (N51024) and various
V0* values. We note that the density of thexG1

maxima are

the smallest for the intermediate value ofV0* , which again
show that for theseV0* values the transition density is th
lowest. Compared to the cumulant intersection values,xG1

maxima are located at slightly smaller densities~see also
Sec. III C! that may be due to finite size effects, which oft
show the feature that phase transition points in finite syst

FIG. 9. Order parameter^cG1
& versus density for different sys

tem sizes (N5400,676,1024,1444,1600) andV0* 50.5.
04610
e
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are shifted to slightly different values depending on the o
servable under investigation. In particular, one expects~and
we get! a shift towards parameter values in the disorde
region~here a liquid, i.e., low densities! for the order param-
eter and the susceptibility as compared to the cumulant
tersection parameters.

We have also calculated the specific heatCV ~Fig. 11! as
a function of the density forV0* 50.2 with N54096 andN
516 384. For a second order transition, the maximum of
specific heat scales with the system size asCV

max;La/n

wherea andn are critical exponents. For a first order tra
sition, on the other hand,CV

max;Ld, whered is the dimen-
sionality (52 in our case!. We, however, do not see any o
this behavior. In contrast, the specific heat is relatively f
tureless. Although it shows a peak, surprisingly, the heigh
this peak is almost insensitive to system size. This is a str
indication that the phase transition we observe is unconv
tional and is KT-like@22,9#. Further, as expected for suc
transitions, the maximum does not lie at the density wh
the cumulants intersect and it would be incorrect to iden
specific heat maxima with the phase boundary~see discus-
sion in Sec. IV!.

In order to study the effect of the path taken through
parameter space on the location of the cumulant intersec
densities, we comparedUL as a function of the density fo
V0* 50.5 as obtained from two runs. In Fig. 4~d! we have
already presented the data for a run where the density

FIG. 11. Specific heat per particle versus density at cons
V0* 50.2 and different system sizes (N54096,16384).
-
FIG. 10. Order parameter sus
ceptibilities versus density for~a!
constantV0* 50.05 and differentL
values,N51024, ~b! full system
size (N51024) and differentV0*
values.
6-6
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PHASE TRANSITIONS OF HARD DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 63 046106
decreased systematically. In Fig. 12 we present data f
second run where the density wasincreasedinstead. We find
negligibly small hysteresis effects on the cumulants as w
as on the value of intersection density. This shows that
transition points are not affected much by the path throu
the parameter space.

C. The phase diagram

We have obtained the phase diagram of the system
0.86,r* ,0.91 and 0,V0* ,1000. For each density andV0*
value we computed cumulantsUL for a range of subsystem
sizesL and located intersection points that we identify w
the phase boundary. The resulting locus of the transi
points is shown in the phase diagram, see Fig. 1. At v
small values ofV0* , we find good agreement of our trans
tion densities with the melting densities (rm'0.91) known
from literature@17# on the pure hard disk solid (V0* 50). The
values of the transition density initially drop and subs
quently rise asV0* increases. The minimum transition dens
is found for V0* '1 –2. These transition points separate
high density solid from a low density modulated liqui
Thus, at a properly chosen density, we observe an in
freezing transition followed by a reentrant melting at
higher V0* value. Such an effect had been found earlier
experiments on colloidal systems in an external laser fi
@4–6#.

In order to quantify finite size effects on the phase d
gram, we have computed the transition points for differ
system sizes. The resulting phase diagrams are shown in
13. We note that due to residual finite size effects with
creasing system size all transition points are slightly shif
to higher densities, the structure of the phase diagram wi
pronounced minimum at intermediate values ofV0* is not
affected by this shift.

FIG. 12. Order parameter cumulantUL versus density at con
stant V0* 50.5 and differentL, N51024. Values are obtained b
successively compressing the system from one density to the
higher density. For a corresponding picture obtained by suc
sively expanding the system see Fig. 4~d!.
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D. Correlation functions

The Debye-Waller correlation function is defined as fo
lows:

CGW 1
~RW !5u^eiGW 1[uW (RW )2uW (0)]&u,

whereRW points to the elementary cell of the ideal lattice, a
uW (RW ) is the deviation of the actual particle position from th
ideal lattice:rW5RW 1uW (RW ). In this case we have chosen th
direction ofRW to lie along they axis ~i.e., along the troughs
of the potential!.

We have also computed the spatial correlation funct
g(y), which is the pair correlation function in they direction.
We compute it in the following way: for a particlei,
g(y)dy} number of particlesj for which uyi2yj uP@y,y
1dy# and uxi2xj u,d0/2, normalized so thatg(y)→1 asy
→`.

These correlation functions are plotted in Fig. 14 as fu
tions of y. The Debye-Waller correlation functionCG1

(y)

and the correlation functiong(y) along the potential valley
are compared in Fig. 14~a! at a density just below the tran
sition. We see that the decay of the maxima ofg(y) as func-
tion of y is similar to the decay inCG1

(y). The decay of

CG1
(y) is analyzed in more detail in Fig. 14~b! for parameter

values in the liquid and in the solid phase. In the liquid pha
the decay is exponential while in the solid region it is alg
braic: CG1

(y);y2hG1. Taking the data points in the crysta

that are closest to the phase boundary for eachV0* , we get
hG1

in the range of 0.20, . . . ,0.27. The exponenthG1
is

predicted@9# to be universal at the transition and equal to 1
for our geometry, so this value is consistent with our nume
cal results.

xt
s-

FIG. 13. Phase diagram in ther* /V0* plane for different system
sizes (N5400,676,1024,1444,1600).
6-7
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FIG. 14. Debye-Waller@CG1
(y)# correlation and pair distribution@g(y)# functions as functions ofy parallel to the potential minima for

fixed r* 50.86 andV0* 52 ~a! and Debye-Waller correlation function versusy for fixed r* 50.88 and differentV0* 50.1,2,1000~b!. Lines
in the upper right corner of~b! show the functionsf (y)5y2w (w50.1,0.2,0.25) for comparison. The system size isN51024.
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E. Scaling behavior

We next try to determine the order of the phase transiti
encountered in this system for various values ofV0* . In order
to investigate this issue we studied the scaling behavio
the order parameter, susceptibility, and the order param
cumulant near the phase boundary for a small~0.5! and a
large~1000! V0* . From finite size scaling theory~for an over-
view see Ref.@20#! we expect these quantities to scale
@28#

^cG1
&LLb; f ~L/j!, ~5!

xLkBTL2c;g~L/j!, ~6!

UL;h~L/j!. ~7!

Here b5b/n, c5g/n ~for critical scaling!, and f,g,h are
scaling functions. The correlation lengthj diverges asj
}(12r/rc)

2n for an ordinary critical point, while for a KT
transition we have an essential singularity andj}exp@a(1
2r/rc)

2ñ#.
According to general arguments given in Ref.@9#, we ex-

pect that for a finite lattice, the identification of the propert
of our system with those of the anisotropicXY model should
improve with increasingV0* . Indeed, for largeV0* , scaling
according to the KT theory seems to be supported by
data. In Fig. 15 we have plotted the left-hand sides of E
~7! and ~6! versusL/j for V0* 51000, where data points fo
0.86<r* <0.898 have been considered andrc* 50.902, ob-
tained by cumulant intersection. In order not to introduce
unwarranted bias, we have separately considered~a! ordinary
critical scaling and~b! a KT scaling forms and adjusted th
values of the parameters until we obtained collapse of
data onto a single curve determined by a least square es
tor ~see Table I!. Though good collapse of our data is o
served both in~a! and ~b!, the numerical values forñ, h
52b, and c522h for KT scaling (b'0.138,c'1.70,ñ
'0.44) are close to the predicted values@9# (b5h/2
51/8,c51.75,ñ50.5).
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The situation is less straightforward forV0* 50.5. The
critical parameters were obtained in this case for densi
0.85<r* <0.876, withrc

!50.878. In Fig. 16~a! the data col-
lapse looks slightly better than in Fig. 16~b!, such that rely-
ing on this data alone one may conclude that KT scaling

FIG. 15. Scaling plots for the order parameter cumulant and
susceptibility~inset! for V0* 51000 assuming~a! critical and~b! KT
scaling. The system size isN51024, for j we have used the ex
pressions given after Eq.~7!.
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this region of the phase diagram seems less likely. It mus
kept in mind though that for small values ofV0* in a finite
system, the analysis of the data would be complicated
crossover effects. Strictly forV050 we do not have a corre
spondence with the anisotropicXY model but rather with a
vector Coulomb gas@22# with a different set of exponents
Our results for the numerical values of the parameters
summarized in Table I.

In summary, from the scaling analysis in Figs. 16 and
a KT scenario at least for largeV0* values seems likely. This
is supported by the behavior of the cumulants as well~see
Sec. III A!. A more precise classification of the phase tra
sitions with the present data and system sizes is not e
This topic is left for future work, in particular we plan t
compute the elastic properties of the system by a met

FIG. 16. Scaling plots for the order parameter and the susce
bility ~inset! for V0* 50.5 assuming~a! critical and~b! KT scaling.
The system size isN51024, for j we have used the expression
given after Eq.~7!.
04610
e

y

re

5

-
sy.

d

recently developed for the hard disk system@18,24# and to
test the KT predictions@9#.

IV. SUMMARY AND CONCLUSION

In summary, we have calculated the phase diagram o
two-dimensional system of hard disks in an external si
soidal potential. We found freezing followed by reentra
melting transitions over a significant region of the phase d
gram in tune with previous experiments on colloids@4–6#
and with the expectations of a recent dislocation unbind
theory@9#. One of the main features of our calculation is t
method used to locate phase boundaries. In contrast to ea
simulations@10–13# that used either the jump of the orde
parameter, or specific heat maxima to locate the phase t
sition, we have used the more reliable cumulant intersec
method. It must be noted that the specific heat in this sys
does not show a strong peak at the phase transition densi
that its use may lead to confusing results. This, in our op
ion, may be the reason for part of the controversy in t
field. It is possible that earlier simulations that used sma
systems and no systematic finite size analysis may h
overlooked this feature ofCV , which becomes apparent onl
in computations involving large system sizes. We ha
shown that finite size scaling of the order parameter cum
lants as obtained from subsystem or sub-block analysis
the other hand, yields an accurate phase diagram.

What is the order of the phase transition? We know t
@16–18# for the pure hard disk system in two dimensions th
question is quite difficult to answer and our present und
standing@18# is that hard disks in two dimensions show a K
transition @22#. This transition, however, lies very close~in
an appropriately expanded parameter space! to a first order
boundary so that crossover effects may be significant.
present system has an imposed external periodic pote
that stabilizes the hexatic phase@9# and an~anisotropic! KT
transition@9# is expected. Our results show several featu
that suggest that this is, perhaps, what we have. Though
have discussed these observations in the rest of the pape
list them below for clarity.

The behavior of the value of the cumulants at intersect
U* is similar to an earlier work@27# on the anisotropicXY
system that shows a KT transition.

The specific heat is relatively featureless and does
scale with system size in a fashion expected of a true
order or conventional continuous transition.

The decay of the correlation functions is similar to what
predicted@9# for an anisotropic scalar Coulomb gas.

For largeV0* values the scaling of the order parameter, t
susceptibility, and the cumulant may be described by the
theory.

ti-
TABLE I. Parameters in the scaling plots~Figs. 16 and 15! for V0* 50.5 andV0* 51000. The first three
parameter columns are for critical scaling, the last four for KT scaling.

V0* b c n b c ñ a

1000 0.13~1! 1.68~5! 2.25~25! 0.138~8! 1.70~5! 0.44~3! 1.05~25!

0.5 0.152~5! 1.65~6! 1.06~13! 0.170~12! 1.83~4! 0.38~10! 1.0~2!
6-9
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Of course, in order to resolve this issue unambiguou
yet larger simulations are required. Also, we need to co
pute elastic properties@24,18# of this system in order to com
pare directly with the results of Ref.@9#. Work along these
lines is in progress.

Before we end, we would like to point out that aft
completion of this work and prior to the submission of th
manuscript we received a preprint@29# where the same sys
tem as ours has been studied using simulations. The p
diagram obtained by these authors is similar to ours~thus
confirming and corroborating our results!, though there exist
v

ys

n

et

ys

ett

en

.K
.

n

04610
,
-

se

some quantitative differences. These differences may be
tributed to the absence of systematic finite size scaling in
latter work.
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