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Phase transitions of hard disks in external periodic potentials: A Monte Carlo study
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The nature of freezing and melting transitions for a system of hard disks in a spatially periodic external
potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analysis of various
thermodynamic quantities like the order parameter, its cumulants, etc., are used to map the phase diagram of
the system for various values of the density and the amplitude of the external potential. We find clear indication
of a reentrant liquid phase over a significant region of the parameter space. Our simulations therefore show that
the system of hard disks behaves in a fashion similar to charge-stabilized colloids that are known to undergo
an initial freezing, followed by a remelting transition as the amplitude of the imposed, modulating field
produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features
consistent with a recent dislocation unbinding theory of laser induced melting.
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[. INTRODUCTION potential, the only dislocations involved are those that have
their Burgers vectors parallel to the troughs of the potential.
The liquid-solid transition in systems of particles under The system, therefore, maps onto an anisotropic, scalar Cou-
the influence of external modulating potentials has recentljomb gas(or XY mode) [9] in contrast to avectorCoulomb
attracted a fair amount of attention from experimdidts7],  gas [22] for the pure two-dimensional melting problem.
theory [8,9], and computer simulationf10—-13. This is  Once bound dislocation pairs are integrated out, the melting
partly due to the fact that well-controlled, clean experimentdemperature is obtained as a function of the renormalized or
can be performed using colloidal particleglst] confined be-  “effective” elastic constants that depend on external param-
tween glass plate@roducing essentially a two-dimensional eters like the strength of the potential, temperature, and/or
system and subjected to a spatially periodic electromagnetidensity. Though explicit calculations are possible only near
field generated by interfering two, or more, crossed lasethe two extreme limits of zero and infinite field intensities,
beams. One of the more surprising results of these studiesne can argue effectively that a reentrant melting transition is
where a commensurate, one-dimensional, modulating poteexpected on general grounds quite independent of the de-
tial is imposed, is the fact that there exist regions in the phastiled nature of the interaction potential for any two-
diagram over which one observes reentright6] freezing/  dimensional system subject to such external potentials. The
melting behavior. As a function of the laser field intensity theactual extent of this region could, of course, vary from sys-
system first freezes from a modulated liquid to a two-tem to system. In addition, these authors predict that the
dimensional triangular solid—a further increase of the inten-auto-correlation function of the Fourier components of the
sity confines the particles strongly within the troughs of thedensity(the Debye-Waller correlation functipdecays alge-
external potential, making the system quasi-one-dimensionalraically in the solid phase at the transition with a universal

which increases fluctuations and leads to remelting. exponent that depends only on the geometry and the magni-
Our present understanding of this curious phenomenotude of the reciprocal lattice vector.
has come from early mean-field density functiof@l and Computer simulation results in this field have so far been

more recent dislocation unbindinfP] calculations. The inconclusive. Early simulationgl0] involving colloidal par-
mean-field theories neglect fluctuations and therefore canndicles interacting via the Derjaguin-Landau-Verwey-
explain reentrant behavior. The order of the transition is preOverbeek potential14] found a large reentrant region in
dicted to be first order for small laser field intensities, thoughapparent agreement with later experiments. On closer scru-
for certain combinations of external potentiglghich in-  tiny, though, quantitative agreement between simulation and
cludes the specific geometry studied in the experiments anelxperiments on the same systébut with slightly different
in this paper the transition may become second order afterparametensappears to be pod6]. Subsequent simulations
going through a tricritical point. In general, though mean[11-13 have questioned the findings of the earlier compu-
field theories are applicable in any dimension, the results art@ation and the calculated phase diagram does not show a
expected to be accurate only for higher dimensions and longignificant reentrant liquid phase.
ranged potentials. The validity of the predictions of such Motivated, in part, by this controversy, we have investi-
theories for the system under consideration is, therefore, igated the freezing/melting behavior of an unrelated system
doubt. subjected to similar modulating external potentials. In this
A more recent theory9] extends the dislocation unbind- paper we have computed the phase behavior of a two-
ing mechanism for two-dimensional meltifig2] for systems dimensional hard disk system in an external potential. The
under external potentials. For a two-dimensional triangulapure hard disk system is rather well stud[@&—18 by now
solid subjected to an external one-dimensional modulatingind the nature of the melting transition in the absence of
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FIG. 1. Phase diagram in the /V§ plane. Transition points for
transitions from the solid to the modulated liquid have been ob- FIG. 2. Schematic picture of the system geometry showing the
tained by the order parameter cumulant intersection method. In ordirection él along which crystalline order develops in the modu-
der to map the phase diagram we scanneginfor every Vg, |ated liquid. The four vectors obtained by rotatiy counter-
starting from the high densitysolid) region. The system size is ¢|ockwise by 60° and/or reflecting about the origin are equivalent.
N=1024. The parametersl, and ag are also shown. The size of the box is
§,XS, and the modulating potential .

external potentials reasonably well explored. Also, there ex- In addition, a particle with coordinates.§) is exposed to
ist colloidal systems with hard interactioh$4] so that, at 55, external p’eriodic potential of the form

least in principle, actual experiments using this system are

possible. Finally, a hard disk simulation is relatively cheap to V(X,y)=Vosin(2mx/dy). 2

implement and one can make detailed studies of large sySrpe constand, in Eq. (2) is chosen such that for a density
tems without straining computational resources. The mawsz/SxSy’ the modulation is commensurate to a triangular
outcome of our calculations, the phase diagram, is shown ifpttice of hard disks with nearest neighbor distaage d,
Fig. 1. We have shown results from our simulation of a=a.,/3/2 (see Fig. 2 The only parameters that define our
system ofN=1024 hard disksdiametero) of density 0.86  system are the reduced densjiy?=p* and the reduced
<p*(=p0o?)<0.91 and the amplitude of the external poten-potential strengthV,/ksT=V? , wherekg is the Boltzmann
tial 0<V§(=pV()<1000. Within our range of densities, constant and is the temperature.

one has a clear signature of a reentrant liquid phase showing

that this phenomenon is indeed a general one as indicated in B. The method

Ref.[9].

The rest of our paper is organized as follows. In Sec. Il
we specify the model and the simulation method including We perform Monte Carl¢MC) simulationg19,2( in the
details of the finite size analysis used. In Sec. Ill we presentanonical(NVT) ensemble for the system with interactions
our results for the order parameter and its cumulants with given by Eqgs.(1) and(2) for various values o¥/§ andp*.
discussion on finite size and hysteresis effects. We alspverages(-) of observables have been obtained with the
present results for the specific heat, order parameter susceganonical measure. In order to obtain thermodynamic quan-
tiblity and correlation functions, which further illustrates the tities for a range of system sizes, we have analyzed various
nature of the phase transitions in this system. In Sec. IV wejuantities within subsystems as shown in Fig. 3. We have
discuss our work in relation to the existing literature on thisused(- ), to denote averages in subsystems. The subsystems
subject, summarize and conclude. are of sizeL,xL,, whereL, and L, are chosen at,

=Lag andL,= Ly\/§/2 consistent with the geometry of the
triangular lattice.
Il. MODEL AND METHOD Most of the simulations described below have been done
for N=1024 particles unless otherwise indicated. Phase tran-
A. The model " . . . :
sitions have been studied in most cases by starting in the

We study a system ol hard disks of diametes in @  ordered solid and reducing® for fixed V§ . Runs where the

two-dimensional box of siz&,X S, (S,/S,=/3/2) interact-  densityp* is increased were also performed in a few cases.

1. Numerical details

ing with the pair potentiakp(r;;) between particles andj A typical simulation run with 410" Monte Carlo steps
with distancer; , (MCS) (including 1.5 10’ MCS for relaxation took about
o <o 50 CPU hours on a PII/500 MHz PC. At high valueswdf in
B(ri) = e (1) addition to ordinary (loca) MC moves we also used
' 0, rj>o. “through-moves,” by which particle placements in neigh-
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In an external periodic field given by E¢), however,
the bond orientational order parameter is nonzero even in the
fluid phas€9,12]. This is because fovg #0 we have now a
“modulated” liquid, in which local hexagons consisting of
the six nearest neighbors of a particle are automatically ori-
ented by the external field. Thyg) is nonzero both in the
(modulatedl liquid and the crystalline phase and it cannot be
used to study phase transitions in this system. The order
parameters corresponding to a solid phase are the Fourier

components of thénonuniform) densityp(F) calculated at
the reciprocal lattice pointSé}. This (infinite) set of num-

bers are all zerdfor G#0) in a uniform liquid phase and
nonzero in a solid. We restrict ourselves to the star consisting
of the six smallest reciprocal lattice vectors of the two-
dimensional triangular lattice. In the modulated liquid phase
that is relevant to our system, the Fourier components corre-
sponding to two out of these six vectors, viz., those in the
direction perpendicular to the troughs of the external poten-
tial, are nonzerd8]. The other four components of this set

consisting of those in the directioB, (as defined for the

ideal crystal in Fig. 2 and those equivalent to it by symme-
try, are zero in thgmodulatedl liquid and nonzero in the

solid (if there is true long range ordeMWe therefore use the
following order parameter:

N

> exp—iGyr))

=1

X Yo, =

FIG. 3. Schematic picture showing sub-boxes of dizéhere

L=3) used in the finite size scaling analygsee texk . » ] ]
wherer; is the position vector of th¢th particle. Note that

boring troughs are tried. Besides producing faster equilibraliough the order p_arametér/xel> decays to zero with in-

tion, including such moves ensures that the formation of discreasing system size in the 2D solid—quasi-long-ranged
locations for largeVi and p*>\3/2 (dy<o) are not order—this decay, being weak, does not hinder us from dis-
artificially hindered since particles can bypass each other—tinguishing, in a finite system, a modulated liquid from the

this is impossible with purely local MC moves. solid phase with positional order in trél direction.
To guarantee good equilibration and averaging, we simu-
lated only systems up tl=1600 particles in the region of 3. Cumulants

I/Ceergk:gse% %?]legﬁ?g i|S1y|§itemlslmwh#eérlg?r?eaiﬂgelz\lr:s%ia 3%1 ion We have determined phase transition points by the order
y 9. 14, greg parameter cumulant intersection metf@8]. The fourth or-

is clearly in the liquid phase and equilibration is much easiery . cumulanU, of the order parameter distribution is given

2. Order parameter by
The nature of the fluid-solid phase transition in two di- <¢4 W
) . G,
mensions has been a topic of controversy throughout the last UL(VE p*)=1 3)

40 year§21-23,16,17,24,18lt is well known that true long
range positional order is absent in the infinitely large system
due to low energy long wavelength excitations so that trans- . N N
lational correlations decay algebraically. According to theln the case of a continuous transition close to the transition
dislocation unbinding mechanism(22,23, the two- point, the cumulant is only a function of the ratio of the
dimensional solidwith quasi-long-ranged positional order System size~Las and the correlation lengté: U, (Las/£).

first melts into a “hexatic” phase with no positional order Sinceé diverges at the critical point the cumulants for dif-
but with quasi long ranged orientational order signifiedferent system sizes intersect in one poldt: (0)=U_(0)

by a nonzero bond orientational order parameigy  =U*. Even for first order transitions these cumulants inter-
=3 exp(—i66) whered is the angle of a bond and the sum is sect[26] though the valu&J* of U, as the intersection is not
over all distinct bonds. A liquid, with no bond orientational universal any more. The intersection point can, therefore, be
order either ()g=0) is produced by a second Kosterlitz- taken as the phase boundary regardless of the order of the
Thouless(KT) [22] transition from the hexatic. transition. This is useful since the order of the melting tran-

3(yh )7
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O L=3| A O L=3
O L=5 O L=5
0.2 Q L=8l ] 0.2 g k=8 FIG. 4. Order parameter
4 4 L=3| (©) 4 L=32 (¥ ) [(® and(c)] and order pa-
N (a) | L 1
| I I | 1 % | | L L L rameter cumulant), [(b) and(d)]
%87 0ss 089 09 091 85 086 087 088 089 versusp* in subsystems of size
P P for reduced potential amplitudes
, , , . , 0.66 F— | . . - V§=0.05[(@ and (b)] and V§
0.66 O =0.5[(c) and(d)], N=1024. Un-
U less otherwise stated, lines con-
r necting data points in this and the
0.62- ! .
L rest of the figures are for visual
B guidance.
0.58-
0.54[
L=3,4,56,8,10,13
P S—
“0.88 0.89 0.9
* *
p P

sition in 2D either in the absend®1-23,16,17,24,1]80r =0.05 andV§ = 0.5 calculated within various subsystems. In
with [8,10-13,9 external potentials is not unequivocally both casegyg ). andU increase withp* with a sharpen-

settled. ing of the structures for increasitig As discussed above, we

In order to map the phase diagram we systematically vargpserve that for any density increasing subsystemside-
the system paramete¥§, andp* to detect order parameter presseq ¢ ) . The cumulantJ, , on the other hand, ap-
cumulant intersection points that are then identified with th roaches Ii?niting value€2/3 for solid and 1/3 for liquit
phase boundary. It should be noted that though the ord he values of the cumulants are higher for largein the

parametg(dgfined fpr long range pqsitional orde@nishes ordered(solid) phase and vice versa in the disordefewmdu-
.[22'2?3 with increasing sy;tem size in the crystalline phas‘?lated liquid phase thus resulting in an intersection point—
its cumulants are well defined and can be used to determlrﬁe]e transition density

phase boundaries. For lardethe cumulants approach the In Fig. 5 we compare the density dependence of the av-

value 2/3 in the solid phase and 1/3 in the lig{#d] so that :
. erage order paramet calculated over the entire sys-
they are guaranteed to intersect. For very largewe do not 9 P é%l) ( y

find a unique point of intersection fa&f, , instead the cumu-

lants for various values df collapse onto a single curve. In

this case the onset of the collapse is taken as the “intersec- 0.6
tion” density. It is curious to note that this behavior is, in
fact, typical of the anisotropiXY model[27]. In this case
although the order parameter cumulants have an intersection
point, the value of the cumulant at the intersection differs for
various anisotropies and drifts towards a limiting value at
zero anisotropy. The intersection “point” therefore changes
to a “line” of intersections for different system sizes and for 0.2
small anisotropies. In our system, for the largg we see

similar behavior.

A_0.4

<Y,

| | | | |
IIl. RESULTS AND DISCUSSION (8).85 0.86 0.87 0.88 0.89 0.9 0091

A. Order parameter and cumulants p

In Fig. 4 we present data for the average order parameter FIG. 5. Average order parametéyc ) versus density foNg
(¥6,) and its cumulants as functions of the density ¥ ~ =0.05, 2, and 40, the system sizeNs= 1024.
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FIG. 8. ValuesU* of the order parameter cumulants at the
intersection points versugj . The shown data at the largest four
values ofV§ are taken at the onset of the cumulants curves merging
(see text The system size ibl=1024.

V5 =2. Again we note that théys ) values decrease with

increasing_ [see Fig. 63)]. The cumulantd), , on the other
hand, increases with for intermediate values o¥§ (the

ordered, solid phasend decreases with for either large or
smallV§ (the disordered, liquid phaseesulting in intersec-
tion points indicating two consecutive phase transitisese
Fig. 6b)].

If V§ is increased to 20 the value of the cumulant at
intersectionU* is shifted upwards, see Fig(aJ. For very
high V§ values the cumulant curves for differdntnerge on
the high density side, see Fig(bJ (see discussion in Sec.
II B 3). In Fig. 8 the cumulant intersection values are shown

tem) for different Vg and for the same system size 55 g function of% , where for largev values the value at
(N=1024). With increasingV§ the turning point in
(¥6,)(p*) is shifted to lower densities and then for evenan universal number but, nevertheless, goes to a limiting
largerV§ values to higher densities. This indicates, alreadyyalue for largeVg [27].
that the system prefers having smaller transition densities for In Fig. 9 we show( szl) as a function of the density with
intermediate values o¥g compared to smaller and higher v* =05 for different N values. The general features of
V; values—i.e., we have a reentrant transition.
In Fig. 6 we show a systematic study(afs, ). andU,_ as
a function of V§ at the densityp* =0.89 for differentL
values. Maxima in thészl}L andU, curves are found near Il C.

0.66 ——————

AeomoODO
[l i aiul e

—— 00 O\ L B W
wo

©

the onset of the merging is shown. We observe thais not

(¢c,) as discussed above is retained though there is a shift

of the turning point to slightly higher densities with increas-
ing N. The effect on the phase diagram is discussed in Sec.

0.66
U
0.64 FIG. 7. Order parameter cu-
) o I i mulantsU, versusp* at constant
SO O L=4 ] V§ =20 (a) and Vg =1000 (b) for
0.62 Priég S| A different L. The system size i8l
S m L-8 . =1024.
S * L=10| |
i () < L-n| ]
06&’-’.’% L [ R U |
'0.88 0.9 0.92 0.94
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FIG. 11. Specific heat per particle versus density at constant
=0.2 and different system sizebl€ 4096,16384).

are shifted to slightly different values depending on the ob-
FIG. 9. Order parametdi/c,) versus density for different sys-  seryaple under investigation. In particular, one expéatsl
tem sizes N=400,676,1024,1444,1600) ai§ =0.5. we ge} a shift towards parameter values in the disordered
region(here a liquid, i.e., low densiti¢$or the order param-
B. Susceptibility, specific heat, finite size effects, and hysteresis gater and the susceptibility as compared to the cumulant in-

In addition to (¢ ). and U_, we have computed the tersection parameters.

order parameter susceptibilityG1 and the specific heat for

different system and subsystem sizes.
The order parameter susceptibilip;, is defined a$30]

We have also calculated the specific h€gt(Fig. 11) as
a function of the density fow§ =0.2 with N=4096 andN
=16 384. For a second order transition, the maximum of the
specific heat scales with the system size GE**~L*"”

KaTye =L2 2\ _ 21 4 wherea and v are critical exponents. For a first order tran-
8Txe, =L U(Y6)5) ~ (Y5 @ sition, on the other hand;{)*~LY, whered is the dimen-

In Fig. 10@ we show xg, as a function ofp* at V3

sionality (=2 in our casg We, however, do not see any of
this behavior. In contrast, the specific heat is relatively fea-

=0.05 for differentL values. The increase ofs, with in-  tureless. Although it shows a peak, surprisingly, the height of
creasingL, signals the presence of a phase transition in théhis peak is almost insensitive to system size. This is a strong
density range where the transition has been found by cumdndication that the phase transition we observe is unconven-
lant intersection techniqueg{~0.896). In Fig. 10h) xg, tional and is KT-like[22,9]. Further, as expected for such

is shown for the same system siz=1024) and various
V; values. We note that the density of tjsagl maxima are

transitions, the maximum does not lie at the density where
the cumulants intersect and it would be incorrect to identify
specific heat maxima with the phase bound@wge discus-

the smallest for the intermediate value\§ , which again  gjon in Sec. \Y

show that for thes&/§ values the transition density is the

In order to study the effect of the path taken through the

lowest. Compared to the cumulant intersection valygs,  parameter space on the location of the cumulant intersection
maxima are located at slightly smaller densitisee also densities, we compared, as a function of the density for

Sec. Il O that may be due to finite size effects, which often V

=0.5 as obtained from two runs. In Fig(d#} we have

show the feature that phase transition points in finite systemalready presented the data for a run where the density was

T
20

Sy =
kBTXG]- 3 E:zg 15
vy L= k. T
10 B XGI_

10

FIG. 10. Order parameter sus-
ceptibilities versus density fo@)
constantvVg =0.05 and different.
values,N=1024, (b) full system
size (N=1024) and different/j
values.
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FIG. 12. Order parameter cumuladj versus density at con- 0.86- 0'1 —— '1 - 1'0 :
stantV§=0.5 and differentL, N=1024. Values are obtained by ) *
successively compressing the system from one density to the next VO
higher density. For a corresponding picture obtained by succes-
sively expanding the system see Figd¥ FIG. 13. Phase diagram in thpg /V§ plane for different system

sizes (N=400,676,1024,1444,1600).

decreased systematically. In Fig. 12 we present data for a
second run where the density wiasreasednstead. We find
negligibly small hysteresis effects on the cumulants as well The Debye-Waller correlation function is defined as fol-
as on the value of intersection density. This shows that théows:

transition points are not affected much by the path through . I,

the parameter space. Cg,(R) = |/ Calu®~u®ly |

D. Correlation functions

C. The phase diagram whereR points to the elementary cell of the ideal lattice, and

We have obtained the phase diagram of the system fad(R) is the deviation of the actual particle position from the
0.86<p* <0.91 and B<V§ <1000. For each density anf  ideal lattice:r =R+ Uu(R). In this case we have chosen the
value we computed cumulants_ for a range of subsystem gjrection ofR to lie along they axis (i.e., along the troughs
sizesL and located intersection points that we identify with of the potential.
the phase boundary. The resulting locus of the transition \we have also computed the spatial correlation function
points is shown in the phase diagram, see Fig. 1. At veryy(y) which is the pair correlation function in thyedirection.
small values ofVj , we find good agreement of our transi- ywe compute it in the following way: for a particle
tion densities with the melting densitiep(~0.91) known  g(y)dy= number of particle§ for which |Yi_Yj| ely,y
from literature[17] on the pure hard disk solid/g =0). The  +dy] and |x; —x;|<do/2, normalized so thag(y)—1 asy
values of the transition density initially drop and subse-— o,
quently rise a¥/§ increases. The minimum transition density ~ These correlation functions are plotted in Fig. 14 as func-
is found for V§~1-2. These transition points separate ations of y. The Debye-Waller correlation functioﬁGl(y)
high density solid from a low density modulated liquid. and the correlation functiog(y) along the potential valley
Thus, at a properly chosen density, we observe an initishre compared in Fig. 1) at a density just below the tran-
freezing transition followed by a reentrant melting at asition. We see that the decay of the maximay6§) as func-
higher V§ value. Such an effect had been found earlier intion of y is similar to the decay ifCel(y)- The decay of

experiments on colloidal systems in an external laser fiel(tG (y) is analyzed in more detail in Fig. {l#) for parameter
1

4-6). . Do . . L
[ In]order to quantify finite size effects on the phase dia_values in the liquid and in the solid phase. In the liquid phase

gram, we have computed the transition points for differenthe.d_ecay IS exp_onnent|al \_/vh|le in the SOI'.d region itis alge-
system sizes. The resulting phase diagrams are shown in Fﬁra'c' CGl(y)Ny 6. Taking the data points in the crystal
13. We note that due to residual finite size effects with in-that are closest to the phase boundary for e&gh we get
creasing system size all transition points are slightly shiftedzs, in the range of 0.20...,0.27. The exponentg, is

to higher densities, the structure of the phase diagram with predicted 9] to be universal at the transition and equal to 1/4
pronounced minimum at intermediate values\§f is not  for our geometry, so this value is consistent with our numeri-

affected by this shift. cal results.
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FIG. 14. Debye-WaIIe[CGl(y)] correlation and pair distributiojg(y)] functions as functions of parallel to the potential minima for
fixed p* =0.86 andV§ =2 (a) and Debye-Waller correlation function versyifor fixed p* =0.88 and differen¥§ = 0.1,2,10000b). Lines
in the upper right corner aofb) show the functiong(y)=y " (w=0.1,0.2,0.25) for comparison. The system siz&lis1024.

E. Scaling behavior The situation is less straightforward fafg =0.5. The

We next try to determine the order of the phase transition§'itical parameters were obtained in_ this case for densities
encountered in this system for various value¥/pf. In order ~ 0.85<p*=<0.876, withp;=0.878. In Fig. 16a) the data col-
to investigate this issue we studied the scaling behavior dgPse looks slightly better than in Fig. (1, such that rely-
the order parameter, susceptibility, and the order parametd?d on this data alone one may conclude that KT scaling in
cumulant near the phase boundary for a snf@lb and a
large(1000 V§ . From finite size scaling theoifor an over-
view see Ref[20]) we expect these quantities to scale as U,

- OOcemma®

[28] 0.6F —rr——rr
(o W LP~F(LIE), (5) L[S ka3
L=5
i L=6
xikeTLC~g(L/§), 6) 057113 L2l
— L=13
U, ~h(L/¢). (7) -
04
Here b=B/v, c=+lv (for critical scaling, and f,g,;h are
scaling functions. The correlation length diverges asé I
«(1—plp.)~ 7 for an ordinary critical point, while for a KT '
transition we have an essential singularity afwexga(l @
—plpd) 7). L L L A B
According to general arguments given in R&f], we ex- y [CE%eme« Omem V0*=1000 |
pect that for a finite lattice, the identification of the properties 56 N |
of our system with those of the anisotrop{&Y model should [ S L b LU IR
improve with increasing/§ . Indeed, for largeVy , scaling R & ~0.06 |
according to the KT theory seems to be supported by our M E:Z %
data. In Fig. 15 we have plotted the left-hand sides of Egs. 0.5 % E:ifo A kBTxGIL'° a i
(7) and (6) versusL/¢ for Vi =1000, where data points for ||« L=13 w {0.04 a8
0.86<p* <0.898 have been considered aiti=0.902, ob- - | 8}. 1
tained by cumulant intersection. In order not to introduce an I « <] “
unwarranted bias, we have separately consideeardinary 04FL o E; ‘; 0.02 '1, .
critical scaling andb) a KT scaling forms and adjusted the <
values of the parameters until we obtained collapse of our - 'b.(l)?f '--0.'01' 0|1L,§ I1 L _
data onto a single curve determined by a least square estima- 00l 0'01 L 0'1 e '1 —
tor (see Table )l Though good collapse of our data is ob- (b) ) ) L&

served both in(a) and (b), the numerical values fop, _
& (b 7 FIG. 15. Scaling plots for the order parameter cumulant and the

=2b, and c=2—17 for KT scaling b~0.138¢~1.70p g qcentibility(insey for V% =1000 assuminga) critical and(b) KT
~0.44) are f:lose to the predicted valugd] (b=7%/2  gcaling. The system size N=1024, foré we have used the ex-
=1/8¢c=1.75p=0.5). pressions given after Eq7).
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recently developed for the hard disk syst€h8,24 and to
test the KT prediction§9].

IV. SUMMARY AND CONCLUSION

In summary, we have calculated the phase diagram of a
two-dimensional system of hard disks in an external sinu-
soidal potential. We found freezing followed by reentrant
melting transitions over a significant region of the phase dia-
gram in tune with previous experiments on collojds-6]
and with the expectations of a recent dislocation unbinding
theory[9]. One of the main features of our calculation is the
method used to locate phase boundaries. In contrast to earlier
simulations[10—13 that used either the jump of the order
parameter, or specific heat maxima to locate the phase tran-
sition, we have used the more reliable cumulant intersection
method. It must be noted that the specific heat in this system
does not show a strong peak at the phase transition density so
that its use may lead to confusing results. This, in our opin-
ion, may be the reason for part of the controversy in this
field. It is possible that earlier simulations that used smaller
systems and no systematic finite size analysis may have
overlooked this feature d,,, which becomes apparent only
in computations involving large system sizes. We have
shown that finite size scaling of the order parameter cumu-
lants as obtained from subsystem or sub-block analysis, on
the other hand, yields an accurate phase diagram.

What is the order of the phase transition? We know that
[16-18 for the pure hard disk system in two dimensions this
question is quite difficult to answer and our present under-
standing 18] is that hard disks in two dimensions show a KT

FIG. 16. Scaling plots for the order parameter and the susceptiransition[22]. This transition, however, lies very clogi

bility (inse for V§ =0.5 assuminda) critical and(b) KT scaling.

an appropriately expanded parameter spacea first order

The system size i&l=1024, for¢ we have used the expressions boundary so that crossover effects may be significant. The

given after Eq(7).

present system has an imposed external periodic potential
that stabilizes the hexatic phak® and an(anisotropi¢ KT

this region of the phase diagram seems less likely. It must bgansition[9] is expected. Our results show several features

kept in mind though that for small values ¥ in a finite

that suggest that this is, perhaps, what we have. Though we

system, the analysis of the data would be complicated byave discussed these observations in the rest of the paper, we
crossover effects. Strictly fov,=0 we do not have a corre- list them below for clarity.

spondence with the anisotropiY model but rather with a

The behavior of the value of the cumulants at intersection

vector Coulomb gaq22] with a different set of exponents. U* is similar to an earlier work27] on the anisotropiXY
Our results for the numerical values of the parameters argystem that shows a KT transition.

summarized in Table I.

The specific heat is relatively featureless and does not

In summary, from the scaling analysis in Figs. 16 and 15scale with system size in a fashion expected of a true first
a KT scenario at least for largé; values seems likely. This order or conventional continuous transition.

is supported by the behavior of the cumulants as \issk

The decay of the correlation functions is similar to what is

Sec. lll A). A more precise classification of the phase tran-predicted[9] for an anisotropic scalar Coulomb gas.

sitions with the present data and system sizes is not easy. For largeV§ values the scaling of the order parameter, the
This topic is left for future work, in particular we plan to susceptibility, and the cumulant may be described by the KT
compute the elastic properties of the system by a methotheory.

TABLE I. Parameters in the scaling ploSigs. 16 and 1pfor V§ =0.5 andV§ =1000. The first three
parameter columns are for critical scaling, the last four for KT scaling.

V§ b c v b c 7 a
1000 0.131) 1.695) 2.2525) 0.1388) 1.7005) 0.443) 1.05(25)
0.5 0.1525) 1.656) 1.0613) 0.17Qq12) 1.834) 0.3910) 1.022)
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Of course, in order to resolve this issue unambiguouslysome quantitative differences. These differences may be at-
yet larger simulations are required. Also, we need to comiributed to the absence of systematic finite size scaling in the
pute elastic propertig24,18 of this system in order to com- latter work.

pare directly with the results of Reff9]. Work along these
lines is in progress.

Before we end, we would like to point out that after
completion of this work and prior to the submission of this
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